Porous [TiNi] device for degenerative disc diseases: Pre-clinical study

Corresponding Author:
Leroux, Michel (2)
Biorthex Inc., R&D-Biomaterials Dept.
9001, L’Acadie Blvd., Suite 802
Montreal, QC H4N 3H5
Canada514-382-4800 / Fax: 514-382-4048 / mleroux@biorthex.com

Presenting Author:
Jarzem, Peter (1)
Santa-Cabrini Hospital, Orthopaedics Dept.
5655 St-Zotique E.
Montreal, QC H1T 1P7
Canada514-251-2061 / Fax: 514-259-3792 / pjarzem@colba.net

Keywords (Primary;Other):
Intervertebral Disc;Low back pain;Lumbar spine;Spine fusion;Titanium alloy

FDA Status for Uses Described statement: In my presentation,
The FDA HAS NOT cleared the following items for the uses described.

I. REVIEW OF MATERIAL
Each author/co-author listed above has reviewed this abstract being submitted for the 48th Annual Meeting and agrees with the material being presented.
Signature __ Date __________________

II. MANDATORY DISCLOSURE STATEMENT
A code letter appearing after each author listed above indicates whether I (or a member of my immediate family) or any of my co-authors (or a member of their immediate family) received something of value (any item, payment, or service valued in excess of $500) from or own stock or stock options in, a commercial or other party which relates directly or indirectly to the subject of my presentation. Each code letter is followed by the name of the source and/or company involved.
The code letters have the following meaning:
A Research or institutional support has been received;
B Miscellaneous non-income support (e.g. equipment or services), commercially derived honoraria, or other non-research related funding (e.g. paid travel) has been received;
C Royalties have been received;
D Stock or stock options held;
E Consultant or employee.
I affirm that the statements regarding disclosure printed above are true.
Signature __ Date __________________

III. DOCUMENTATION OF FDA STATUS FOR USES DESCRIBED
I affirm that the “FDA Status for Uses Described” statement printed above is true.
Signature __ Date __________________

IV. NON-EXCLUSIVE LICENSE
I have created and am the current copyright holder of a certain presentation and any and all submitted materials identified in this application, hereinafter referred to as the “Work.” I agree to license the Work to the Orthopaedic Research Society, hereinafter referred to as the “ORS,” according to the following terms and conditions:
1. This license shall commence upon the date of execution of this Agreement.
2. I hereby agree to grant the ORS a non-exclusive license for the use of the Work. The ORS is not obligated to use the Work in any way.
3. I am granting this license to the ORS as a contribution, I specifically release the ORS from any obligation to pay money or otherwise perform services for this license.
4. The ORS may use the Work for educational purposes only. I understand and agree that these purposes include, but are not limited to, the sale and advertisement of the Work; use of the Work in abstracted form in the Transactions of the 48th Annual Meeting, on the Internet, or other public sources; exhibition; broadcast; distribution and duplication and use of excerpts or abstracts of the Work solely or in combination with other materials.
5. I acknowledge that the first publication date for the Work will be January 21, 2002.
6. If I have violated or infringed a personal or property interest (including a copyright or trademark) of any individual or entity in granting a license to the ORS to use the Work, I agree to indemnify the ORS against any and all liability for payment of claims, judgments, or settlements, for violation or infringement of any personal or property rights resulting from the ORS’ use of the Work, and for any attorneys’ fees that the ORS incurs in the defense of such claim. The ORS will promptly notify me in writing of any such claim, and shall not settle any such claim without my prior written, expressed consent.
I have read the foregoing license and agreement before signing below, and I fully understand the contents.
Signature __ Date __________________
INTRODUCTION

Degenerative disc diseases (DDD) that induce back pain through a degenerative collapse of the disc and the consequent increase of segmental instability represent a major concern for spinal surgeons. The development of cages arises from the high rate of failure reported when allograft or autogenous graft was used without instrumentation. Despite the numerous options for lumbar interbody fusion, cages have been reported to subside, migrate, break or fail to induce fusion [1, 2].

To improve the relation between the implant and the biological structures, a new porous metal has been developed for medical applications. Using porous TiNi, biological tissues take advantage of the network of interconnected fenestration that extend throughout all this osteoconductive material [3]. An interbody fusion implant made of porous TiNi should permit the fusion of adjacent vertebral bodies without the requirement for additional bone graft. The objective of this study was to examine the outcome of a group of patients suffering from degenerative disc disease and instrumented with TiNi interbody fusion devices. This study is retrospective for the preoperative evaluation of the patients and the surgical instrumentation, and mainly prospective for the postoperative measurements.

MATERIALS AND METHODS

Patients

Patients instrumented with TiNi interbody fusion devices (IFD) at the Novosibirsk Research Institute of Traumatology and Orthopaedics were identified based on the following criterion. Patients were instrumented at the lumbar level (L4 and/or L5) following DDD diagnosis. A posterior lumbar interbody fusion (PLIF) technique was used with cylindrical implants with no supplemental posterior instrumentation. From the 55 patients identified, 39 had a minimum postoperative follow-up of six months and accepted to participate. The group included 27 males and 12 females having a mean age of 43.2 years.

The implants were machined from porous TiNi alloy produced following a self-propagating high temperature technique [4]. This material showed 74% of porosity and an average pore size of 297µm (SD: 165µm). The dimensions of the implant (diameter and length) were specified following the evaluation of the specific spinal geometry of each patient: 12mm (n = 29, 64%) or 14mm (n = 16, 36%) diameters; 21-25mm in length.

Evaluation parameters

The standard radiological evaluation consisted of standing postero-anterior (PA) and lateral films, and spine flexion and extension films. Fusion was quantified by the difference between adjacent vertebral relative orientation on flexion and extension radiographs. An instrumented level showing a displacement of less than 5 degrees was considered fused.

Low back pain was assessed using a 6-point scale: 0 representing no pain and 6 corresponding to unbearable pain. Functional outcome was assessed through a 24-binary statement questionnaire. Patient’s condition self-rating was also recorded following a 5-point scale: worse, not improved, mildly improved, marked improvement, complete recovery. Complications and secondary operations were also reported.

Five-ml blood samples were taken to quantify the nickel ions levels using inductively-coupled plasma mass spectrometry (ICP-MS).

RESULTS

A single level was instrumented in 33 patients (85%); the L4 disc in 13 patients and the L5 disc in 20 patients. Both L4 and L5 discs were instrumented in 6 other patients (15%). The average postoperative follow-up for these patients was 13.1 months (SD: 4.5 months). 32 patients were instrumented with additional bone graft packed anterior to the implant and 7 patients were instrumented without any bone graft. No difference was found between the two groups.

Complications were reported in 5 patients. All complications resolved shortly after the surgery and all involved patients developed interbody fusion. 36 patients (95%) showed interbody fusion with a displacement smaller than 5 degrees (average: 2.4 degrees). The average nickel content was 2.7µg/L (SD: 3.4µg/L) and it corresponded very well with the basal 1-5 µg/L blood concentration reported [5].

Patients’ preoperative pain was high: 4.2 points (SD: 0.8 points) on a maximum of 5. The postoperative score was low: 0.6 (SD: 0.8) for an average pain reduction of 3.6 points (p < .001). Patients’ postoperative condition self-rating was also high: i.e. 4.5 points (SD: 0.7 point) on a 5-point scale. 23 patients claimed a complete recovery, 12 others claimed a marked improvement, and 4 patients condition was mildly improved.

Preoperative results of the disability questionnaire revealed that patients’ condition was not very good before the surgery with 89% of the statements answered as “relevant”. On the other hand, postoperative results show that the patients are in a better condition with only 6% of statements identified as “relevant”. After grouping all statements across patients, 83.8% of the items have improved. None of the items showed deterioration and only 5.8% did not improve.

DISCUSSION

Disc collapse often results into segmental instability and low back pain. Instrumentation with intervertebral implants and fusion is the prevalent treatment. Numerous implant designs are available on the market, but very few permit osseointegration that improves interbody fusion. In the present study, only 2 patients (5.1%) showed non-fusion at follow-up. This result is comparable to those presented in the literature. Kuslich et al. [6] reported a four-year follow-up of patients instrumented with the BAK lumbar fusion cage. They have shown 91.7% and 95.1% fusion rates after two and four years respectively. These results were obtained following addition of bone graft. In the present study, 7 patients were instrumented without bone graft and all showed fusion with an average intervertebral displacement of 2.7 degrees (1.6 degrees). The use of bone graft does not seem to make any difference in the fusion process. These results support the existence of the TiNi osteoconduction properties. Additionally, nickel concentration levels compared very well with human normal blood levels.

Complications observed in the present study were similar to those reported in literature. Out of the 39 patients instrumented, only two inadvertent dural lacerations (5.1%) were noted. No additional surgery was required, but the mean follow-up is relatively short.

All patients felt important pain relief after the surgery. None experienced “very bad pain” or “almost unbearable pain”. Among the group, 23 patients (59%) did not experience any pain, 11 patients (28%) had little pain, 4 patients (10%) had moderate pain, and only 1 patient (3%) still experienced bad pain. The decrease in pain also results into important improvement of patient’s function (83.8%).